1) a) $1 \times 10 \times 10 \times 10$
b) $\mathbf{1 \times 1 0 \times 1 0 \times 1 0 \times 1 0 = 1 0 0 0 0}$
2) a) $2342,3342,4342,5342,6342$
b) $10,110,210,310,410$

Count forwards in steps of 100.
c) $\mathbf{7 9} \mathbf{0 1 9}, \mathbf{8 9 0 1 9} 99 \mathbf{0 1 9}, 109019$

Count forwards in steps of 10000.
d) $\mathbf{6 9 9 0}, 7000,7010,7020$

Count forwards in steps of 10.
3) a)
609020

b) Examples include 659020599020

1) a) 11311 should be 11301 .
b) $\mathbf{4} \mathbf{2 5 2}$ should be $\mathbf{4} 262$.
c) $\mathbf{6 2 9 0 3}$ should be 61903 .
2) C is the false statement. You cannot count forwards from 14023 and reach 13923 as it less than 14203.
3) The function machine counts forwards in 1000 s .

626039 would be the $9^{\text {th }}$ term in the sequence.

1) a) Bethany is incorrect. Ron is correct (if negative numbers are considered). For example, counting back in 10s from 3 would produce -7.
b) A variety of answers acceptable. Zero is a good example. Counting forwards or backwards from zero in 10 s will always produce a number that has a zero in the ones place. Numbers ending in 5 will also create sequences of numbers ending in 5 when counting forwards and backwards in tens.
2) Jane is correct when the numbers are all positive or all negative. However, when a sequence crosses zero, the last 4 digits will usually change.
3) a)

$8^{\text {th }}$ backward	$4^{\text {th }}$ backward		$4^{\text {th }}$ forward	$8^{\text {th }}$ forward
19	419	819	1219	1619
217	617	1017	1417	1817
3827	41827	45827	94827	53827
381134	381534	381934	382334	382734

b) The last $\mathbf{2}$ digits of every number are the same as the original.
4) Variety of possible answers.

Counting Maze

To count in steps of powers of ten.

Start at any of the 4 gift boxes and count forwards or backwards in steps of powers of 10 to find out which present is in each box.

Counting Maze

To count in steps of powers of ten.

Start at any of the 4 gift boxes and count forwards or backwards in steps of powers of 10 to find out which present is in each box.

						ards in 10 000s	122413	
17734	16834	163314	183314	22143	33134	134413	123413	123513
18734	16934	193314	18134	18334	32143	124413	133413	133423
313314	203314	17034	17134	18234	42143	125413	136413	136513
413314	213314	223314	234314	17234	52143	53134	126413	137413
93143	94143	82243	233314	62143	17334	17434	17534	127413
113143	92143	82143	72143	243314	130413	129413	128413	17634
112143	102143	103143	72243	131413	253314	263314	273314	17734

Counting Maze

To count in steps of powers of ten.

Start at any of the 4 gift boxes and count forwards or backwards in steps of powers of 10 to find out which present is in each box.

5414617 Backwards in 10 000s
1761716 Backwards in 100s

Counting Maze Answers

Counting Maze Answers

Counting Maze Answers

1)

2)

3)

Starting number	Add 1000	Add 10000	Add 100000
14521	15521	24521	114521
588321	589321	598321	688321
302853	303853	312853	402853

1) a) False $10000 \times 10=100000$
b) False $1000 \times 100=100000$
c) True
2) a) There are two possible answers:

START	452	100	1000	1000					
100	16	100000	23109	10000	100	16	100000	23109	10000
10	10000	100000	4527	10000	10	10000	100000	4527	10000
78	1001	10000	10000	FINISH	78	1001	10000	10000	FINISH

b) Children should have found the other possible route shown above.
c) There are two pathways. The totals are either 130110 or 232210.
3) Tommy is incorrect as each square will be worth 100000 . Talia is also incorrect. Some of the numbers shown on the ten-frame will be larger than 500000 if at least $\mathbf{6}$ or more of the squares are filled.

1) There are many possible answers.

For a), children need to show that you are adding 10 000, 1000, 100000 and 100000.
For b), children need to show that you are adding 100, 1000, 100000 and 10.
For c), children need to show that you are adding 10, 1000, 100 and 100000.
An example can be seen below:
a)

b)

c)

2) a) Never true - each square will represent 100000.
b) Sometimes true - adding 10000 will change the hundreds digit if the ten thousands digit is a 9 .
c) Never true - there are five powers of ten: 10, 100, 1000, 10000 and 100000.
d) Always true - when adding $100 \mathbf{0 0 0}$, you need to look at the digit in the hundred thousands column.

1) Match the calculations to the current product.

10000×10	100×100	100000×10	100×10

2) Complete the part-whole models by writing the correct power of ten or total in the empty circles.

3) Complete the table.

Starting Number	Add 1000	Add 10000	Add 100000
14521			
588321			
302853			

1) Which of these statements are false? Prove it!
a) 10000 tens are equal to a million.
\qquad
b) $1000 \times 100=1000000$
\qquad
c) 100 lots of 100 is equal to 10000 .
2) a) Moving only left, right, up and down, find a route through the maze that takes you from START to FINISH. You can only land on squares that are powers of ten.

START	452	100	1000	1000
100	16	100000	23109	10000
10	10000	100000	4527	10000
78	1001	10000	10000	FINISH

b) Find all possible ways through the maze.
c) Find the total of each pathway.
3) Tommy and Talia are discussing a ten-frame that represents 1 million.

Do you agree with Tommy and Talia? Explain your answer.
\qquad
\qquad
\qquad

1) For each set of coloured circles, Sami has started on the number on the left and added powers of ten to get to the number on the right. For each set of circles, write a number that could go on the circles.
a)

b)

c)

2) Martin has written sentences about powers of ten. Read the statements and decide whether they are always, sometimes or never true. Explain your choice.
a) When representing a million on a ten-frame, each square will represent 10000.
\qquad
\qquad
\qquad
b) Adding 10000 changes the hundred thousands digit.

\qquad
\qquad
c) There are four powers of ten between 0 and 1 million.
\qquad
\qquad
d) To count forward in steps of 100 000, you need to look at the hundred thousands digit and add 1.
\qquad
\qquad
3) Match the calculations to the current product.

4) Complete the part-whole models by writing the correct power of ten or total in the empty circles.

5) Complete the table.

Starting number	Add 1000	Add 10000	Add 100000
14521			
588321			
302853			

1) Match the calculations to the current product.

2) Complete the part-whole models by writing the correct power of ten or total in the empty circles.

3) Complete the table.

Starting number	Add 1000	Add 10000	Add 100000
14521			
588321			
302853			

1) Which of these statements are false? Prove it!
a) 10000 tens are equal to a million.
b) $1000 \times 100=1000000$
c) 100 lots of 100 is equal to 10000 .
2) a) Moving only left, right, up and down, find a route through the maze that takes you from START to FINISH. You can only land on squares that are powers of ten.

START	452	100	1000	1000
100	16	100000	23109	10000
10	10000	100000	4527	10000
78	1001	10000	10000	FINISH

b) Find all possible ways through the maze.
c) Find the total of each pathway.
3) Tommy and Talia are discussing a ten-frame that represents 1 million.

Do you agree with Tommy and Talia?
Explain your answer.

1) Which of these statements are false? Prove it!
a) 10000 tens are equal to a million.
b) $1000 \times 100=1000000$
c) 100 lots of 100 is equal to 10000 .
2) a) Moving only left, right, up and down, find a route through the maze that takes you from START to FINISH. You can only land on squares that are powers of ten.

START	452	100	1000	1000
100	16	100000	23109	10000
10	10000	100000	4527	10000
78	1001	10000	10000	FINISH

b) Find all possible ways through the maze.
c) Find the total of each pathway.
3) Tommy and Talia are discussing a ten-frame that represents 1 million.

Do you agree with Tommy and Talia?
Explain your answer.

1) For each set of coloured circles, Sami has started on the number on the left and added powers of ten to get to the number
 on the right.

For each set of circles, write a number that could go on the circles.

b)

c)

2) Martin has written sentences about powers of ten. Read the statements and decide whether they are always, sometimes or never true. Explain your choice.
a) When representing a million on a ten-frame, each square will represent 10000.
b) Adding 10000 changes the hundred thousands digit.
c) There are four powers of ten between 0 and 1 million.

d) To count forward in steps of 100 000, you need to look at the hundred thousands digit and add 1.

1) For each set of coloured circles, Sami has started on the number on the left and added powers of ten to get to the number
$\bullet \bullet$ on the right.

For each set of circles, write a number that could go on the circles.
a)

b)

c)

2) Martin has written sentences about powers of ten. Read the statements and decide whether they are always, sometimes or never true. Explain your choice.
a) When representing a million on a ten-frame, each square will represent 10000.
b) Adding 10000 changes the hundred thousands digit.
c) There are four powers of ten between 0 and 1 million.

d) To count forward in steps of 100 000, you need to look at the hundred thousands digit and add 1.

4567

4667

4767

4867

4967

17
 642

19 642

20
 642

21 642

4210

14 210

24

44

77

78
 198

79 198

80
 198

82

182

981

482
 981

384819

404
 819

414
 819

076

176

856 349

956 349

056

774 349

784
 349

794 349

804349

814349

1) a) Write down a calculation that can be used to work out 10^{3}.
b) Calculate 10^{4}.
2) a) Count forwards in steps of 1000 .

2342, \qquad , 4342, \qquad 6342
b) Count forwards in steps of \qquad .

10, \qquad , 210, \qquad 410.
c) Count forwards in steps of \qquad .

79019,89019 , \qquad , \qquad .
d) Count \qquad in steps of \qquad .

6990 , \qquad , \qquad 7020.
3) a) Rewrite the numbers in ascending order and describe the power of 10 they have increased by.

\qquad
b) Write an additional number that could also be included.

1) Alexis has been writing his own sequences.

Can you identify and correct the mistake he has made in each sequence?
a) $11261,11271,11281,11291,11311$ \qquad
b) $4562,4462,4362,4252,4162$ \qquad
c) $62103,62003,62903,61803,61703$ \qquad
2) Lucy has the number 14023 . She says two true statements and a false statement about her number. Can you identify the false statement? Explain your thinking.
a) If I count backwards in 1 000s, I will say the number 9023 .
b) If I count forwards in 10 000s, I will say 104023.
c) If I count forwards in 100s, I will say the number 13923 .
3) a) What rule does the function machine follow?

b) Find the $9^{\text {th }}$ term in the sequence.

1) Bethany counts forwards and backwards in 10 s from 73.

a) Ron says that she is incorrect. Why did Ron say this?
b) Write a number that you can count from in tens, forwards and backwards, that will always have the same digit in the ones place.
2) Explain when Jane would be correct and when she would be incorrect.

When you count in ten thousands, the last four digits of a number stay the same.
3) Adam writes some numbers. From each number, he counts forwards and backwards in hundreds.
a) Write down the $4^{\text {th }}$ and $8^{\text {th }}$ number that Adam arrives at each way.

$8^{\text {th }}$ backward	$4^{\text {th }}$ backward		$4^{\text {th }}$ forward	$8^{\text {th }}$ forward
		819		
		1017		
		45827		
		381934		

b) Can you see any relationships between the numbers in each row? Explain what the relationship is.
\qquad
\qquad
4) Create your own grid that shows a similar relationship between numbers when counting forwards and backwards in either 10s, 100s, 1000s or 10000 s .

Rolling Powers of Ten

To understand powers of ten up to 1 million.

Work with your partner to play this game. The aim of the game is to complete your table first. Roll the dice and use the key below to see which power of ten you will be adding to your starting number. Fill in your table with the right answer. Each time you roll, you should be adding the power of ten to the original number.

If, for example, you roll a two on the dice (add 100) and you have already added 100 to all of your starting numbers, you will have to miss your go! Who will be the first to fill in their table?

Partner A

Starting Number	Add 10	Add 100	Add 1000

Partner B

Starting Number	Add 10	Add 100	Add 1000

Key

- add 10	\bigcirc	add 100	${ }^{\bullet}$	add 1000
$\left.\begin{array}{lll}\bullet & \bullet \\ \bullet & \bullet\end{array}\right)$ add 10	0	add 100	88	add 1000

Rolling Powers of Ten

To understand powers of ten up to 1 million.

Work with your partner to play this game. The aim of the game is to complete your table first. Roll the dice and use the key below to see which power of ten you will be adding to your starting number. Fill in your table with the right answer. Each time you roll, you should be adding the power of ten to the original number.

If, for example, you roll a two on the dice (add 100) and you have already added 100 to all of your starting numbers, you will have to miss your go! Who will be the first to fill in their table?

Partner A

Starting Number	Add 10	Add 100	Add 1000	Add 10 000	Add 100000

Partner B					
Starting Number	Add 10	Add 100	Add 1000	Add 10 000	Add 100000

Key

$\begin{array}{ll}\bullet & \bullet \\ \bullet & \bullet\end{array}$ add 10000

add 100000
88
add any power
of 10 you like

Rolling Powers of Ten

To understand powers of ten up to 1 million.

Work with your partner to play this game. The aim of the game is to complete your table first. Roll the dice and use the key below to see which power of ten you will be adding to your starting number. Fill in your table with the right answer. Each time you roll, you should be adding the power of ten to the original number.

If, for example, you roll a two on the dice (add 100) and you have already added 100 to all of your starting numbers, you will have to miss your go! Who will be the first to fill in their table?

Partner A

Starting Number	Add 10	Add 100	Add 1000	Add 10 000	Add 100000

Partner B					
Starting Number	Add 10	Add 100	Add 1000	Add 10 000	Add 100000

Key

$\begin{array}{ll}\bullet & \bullet \\ \bullet & \bullet\end{array}$ add 10000

add 100000
88
add any power
of 10 you like

Rolling Powers of Ten

To understand powers of ten up to 1 million.

Work with your partner to play this game. The aim of the game is to complete your table first. Roll the dice and use the key below to see which power of ten you will be adding to your starting number. Fill in your table with the right answer. Each time you roll, you should be adding the power of ten to the original number.

If, for example, you roll a two on the dice (add 100) and you have already added 100 to all of your starting numbers, you will have to miss your go! Who will be the first to fill in their table?

Partner A

Starting Number	Add 10	Add 100	Add 1000
462			
3844			
1191			

Partner B

Starting Number	Add 10	Add 100	Add 1000
341			
4920			
5228			

Key

- add 10	\bigcirc add 100	${ }^{\bullet}$ a add 1000
$\left.\begin{array}{ll}\bullet & \bullet \\ \bullet & \bullet\end{array}\right]$ add 10	${ }^{\bullet}$ - ${ }^{\bullet}$ add 100	8 \% add 1000

Rolling Powers of Ten

To understand powers of ten up to 1 million.

Work with your partner to play this game. The aim of the game is to complete your table first. Roll the dice and use the key below to see which power of ten you will be adding to your starting number. Fill in your table with the right answer. Each time you roll, you should be adding the power of ten to the original number.

If, for example, you roll a two on the dice (add 100) and you have already added 100 to all of your starting numbers, you will have to miss your go! Who will be the first to fill in their table?

Partner A

Starting Number	Add 10	Add 100	Add 1000	Add 10 000	Add 100000
2462					
35844					
10191					

Partner B					
Starting Number	Add 10	Add 100	Add 1000	Add 10 000	Add 100000
4861					
23844					
17653					

Key

Rolling Powers of Ten

To understand powers of ten up to 1 million.

Work with your partner to play this game. The aim of the game is to complete your table first. Roll the dice and use the key below to see which power of ten you will be adding to your starting number. Fill in your table with the right answer. Each time you roll, you should be adding the power of ten to the original number.

If, for example, you roll a two on the dice (add 100) and you have already added 100 to all of your starting numbers, you will have to miss your go! Who will be the first to fill in their table?

Partner A

Starting Number	Add 10	Add 100	Add 1000	Add 10 000	Add 100000
244962					
350844					
106191					

Partner B					
Starting Number	Add 10	Add 100	Add 1000	Add 10 000	Add 100000
485045					
723891					
451100					

Key

1) a) Write down a calculation that can be used to work out 10^{3}.
b) Calculate 10^{4}.
2) a) Count forwards in steps of 1000 .

2342, \qquad , 4342, \qquad 6342
b) Count forwards in steps of \qquad .

10, \qquad , 210, \qquad 410.
c) Count forwards in steps of \qquad .

79 019, 89019 \qquad , \qquad .
d) Count \qquad in steps of \qquad .

6990 , \qquad , \qquad 7020.
3) a) Rewrite the numbers in ascending order and describe the power of 10 they have increased by.

1) a) Write down a calculation that can be used to work out 10^{3}.
b) Calculate 10^{4}.
2) a) Count forwards in steps of 1000 .

2342, \qquad , 4342, \qquad 6342
b) Count forwards in steps of \qquad .

10, \qquad , 210, \qquad 410.
c) Count forwards in steps of \qquad .

79 019, 89019 \qquad , \qquad .
d) Count \qquad in steps of \qquad .

6990 , \qquad , \qquad , 7020.
3) a) Rewrite the numbers in ascending order and describe the power of 10 they have increased by.

1) Alexis has been writing his own sequences.

Can you identify and correct the mistake
 he has made in each sequence?
a) $11261,11271,11281$, 11 291, 11311
b) $4562,4462,4362$, 4 252, 4162
c) $62103,62003,62903$, 61 803, 61703

2) Lucy has the number 14023 . She says two true statements and a false statement about her number.
Can you identify the false statement?
Explain your thinking.
a) If I count backwards in 1000 s, I will say the number 9023.
b) If I count forwards in 10 000s, I will say 104023.
c) If I count forwards in 100 s, I will say the number 13923.
3) a) What rule does the function machine follow?

b) Find the $9^{\text {th }}$ term in the sequence.

1) Alexis has been writing his own sequences.

Can you identify and correct the mistake
 he has made in each sequence?
a) $11261,11271,11281$, 11 291, 11311
b) $4562,4462,4362$, 4 252, 4162
c) $62103,62003,62903$, 61 803, 61703

2) Lucy has the number 14023 . She says two true statements and a false statement about her number. Can you identify the false statement? Explain your thinking.
a) If I count backwards in 1000 s, I will say the number 9023.
b) If I count forwards in 10 000s, I will say 104023.
c) If I count forwards in 100 s , I will say the number 13923.
3) a) What rule does the function machine follow?

b) Find the $9^{\text {th }}$ term in the sequence.

1) Bethany counts forwards and backwards in 10s from 73.

As I count forwards and backwards from 73, all the numbers I say will end in 3.

Bethany

a) Ron says that she is incorrect. Why did Ron say this?
b) Write a number that you can count from in tens, forwards and backwards, that will always have the same digit in the ones place.
2) Explain when Jane would be correct and when she would be incorrect.

When you count in ten thousands, the last four digits of a number stay the same.
3) Adam writes some numbers. From each number, he counts forwards and backwards in hundreds.
a) Write down the $4^{\text {th }}$ and $8^{\text {th }}$ number that Adam arrives at each way.

$8^{\text {th }}$ backward	$4^{\text {th }}$ backward		$4^{\text {th }}$ forward	$8^{\text {th }}$ forward
		819		
		1017		
		45827		
		381934		

b) Can you see any relationships between the numbers in each row? Explain what the relationship is.
4) Create your own grid that shows a similar relationship between numbers when counting forwards and backwards in either 10s, 100s, 1000s or 10 000s.

1) Bethany counts forwards and backwards in 10s from 73.

a) Ron says that she is incorrect. Why did Ron say this?
b) Write a number that you can count from in tens, forwards and backwards, that will always have the same digit in the ones place.
2) Explain when Jane would be correct and when she would be incorrect.

When you count in ten thousands, the last four digits of a number stay the same.
3) Adam writes some numbers. From each number, he counts forwards and backwards in hundreds.
a) Write down the $4^{\text {th }}$ and $8^{\text {th }}$ number that Adam arrives at each way.

$8^{\text {th }}$ backward	$4^{\text {th }}$ backward		819	
		$4^{\text {th }}$ forward	$8^{\text {th }}$ forward	
		1017		
		45827		
		381934		

b) Can you see any relationships between the numbers in each row? Explain what the relationship is.
4) Create your own grid that shows a similar relationship between numbers when counting forwards and backwards in either 10s, 100s, 1000s or 10 000s.

