Answers

- 1) a) 11 311 should be 11 301.
 - b) 4 252 should be 4 262.
 - c) 62 903 should be 61 903.
- 2) C is the false statement. You cannot count forwards from 14 023 and reach 13 923 as it less than 14 203.
- 3) The function machine counts forwards in 1000s.
 - 626 039 would be the 9th term in the sequence.
- 1) a) Bethany is incorrect. Ron is correct (if negative numbers are considered). For example, counting back in 10s from 3 would produce -7.
- b) A variety of answers acceptable. Zero is a good example. Counting forwards or backwards from zero in 10s will always produce a number that has a zero in the ones place. Numbers ending in 5 will also create sequences of numbers ending in 5 when counting forwards and backwards in tens.
- 2) Jane is correct when the numbers are all positive or all negative. However, when a sequence crosses zero, the last 4 digits will usually change.

3) α)	8 th backward	4 th backward		4 th forward	8 th forward
	19	419	819	1 219	1 619
	217	617	1 017	1417	1817
	3 827	41 827	45 827	94 827	53 827
	381 134	381 534	381 934	382 334	382 734

- b) The last 2 digits of every number are the same as the original.
- 4) Variety of possible answers.

Counting Maze

To count in steps of powers of ten.

Start at any of the 4 gift boxes and count forwards or backwards in steps of powers of 10 to find out which present is in each box.

7652	Forwards in	10s	8.7·14		7522 For	wards in 1000s		。 251 。
7662	8734	8724	16 571	16 651	8522	8523	16 351	15 351
8744	7672	16 851	16 751	9522	16 551	16 451	16 513	15 513
8754	16 951	7682	7692	7926	10 522	16 541	11 315	10 513
16 591	8764	17 051	7702	11 522	10 255	16 531	16 351	8834
8742	8774	17 151	7712	12 522	13 522	14 525	15 255	88 45
8784	7732	7722	17 251	8824	8834	14 522	15 522	13 255
7742	8794	8804	8814	17 351	8843	8844	8854	16 522

Counting Maze

To count in steps of powers of ten.

Start at any of the 4 gift boxes and count forwards or backwards in steps of powers of 10 to find out which present is in each box.

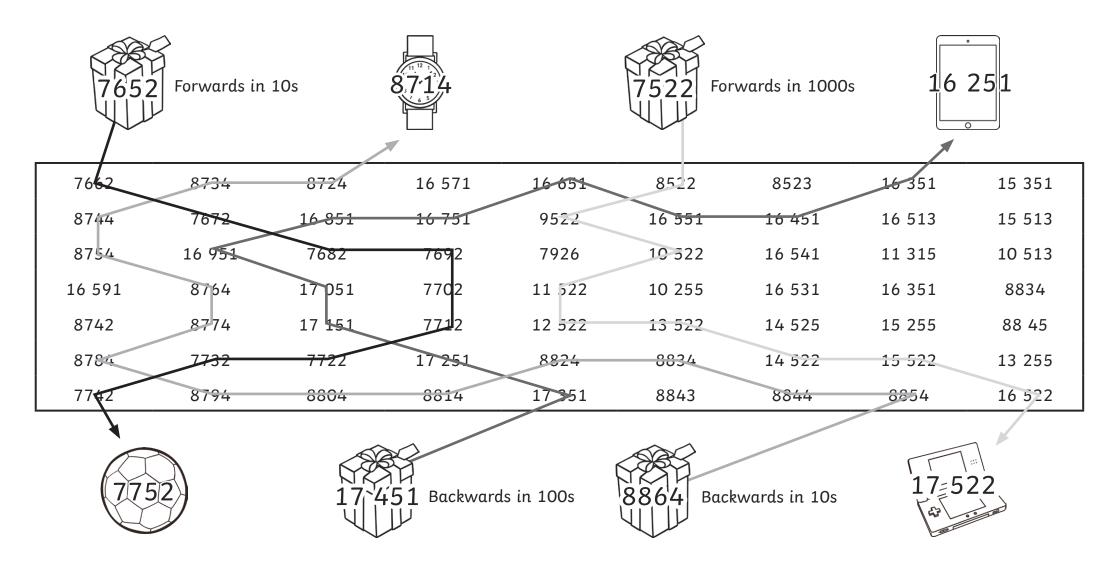
1673	4 Forwards in	100s 1	7.3 314		12-143 For	wards in 10 00		413
17 734	16 834	163 314	183 314	22 143	33 134	134 413	123 413	123 513
18 734	16 934	193 314	18 134	18 334	32 143	124 413	133 413	133 423
313 314	203 314	17 034	17 134	18 234	42 143	125 413	136 413	136 513
413 314	213 314	223 314	234 314	17 234	52 143	53 134	126 413	137 413
93 143	94 143	82 243	233 314	62 143	17 334	17 434	17 534	127 413
113 143	92 143	82 143	72 143	243 314	130 413	129 413	128 413	17 634
112 143	102 143	103 143	72 243	131 413	253 314	263 314	273 314	17 734

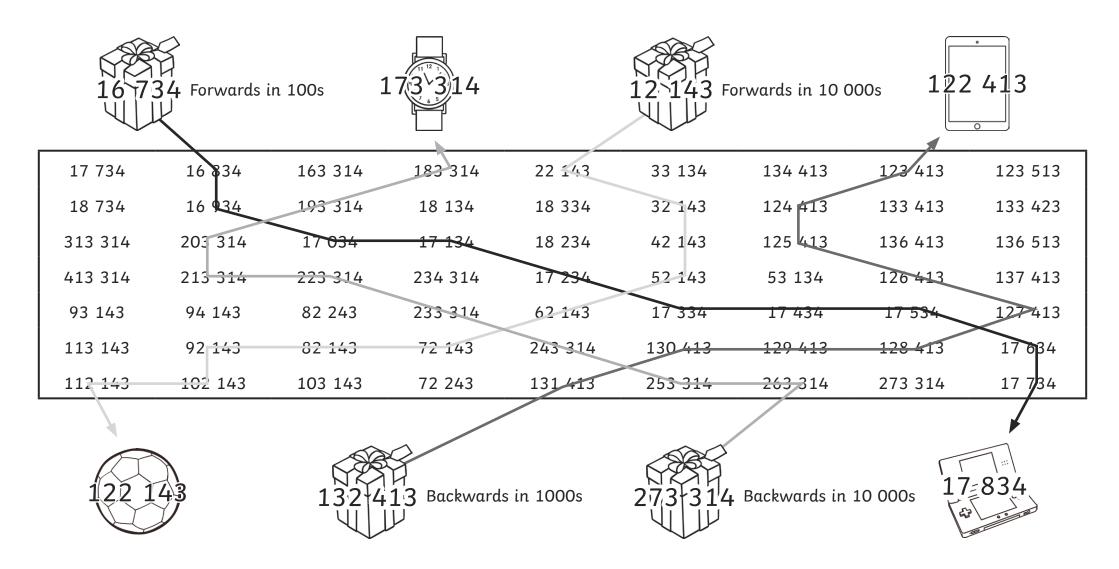
Counting Maze

To count in steps of powers of ten.

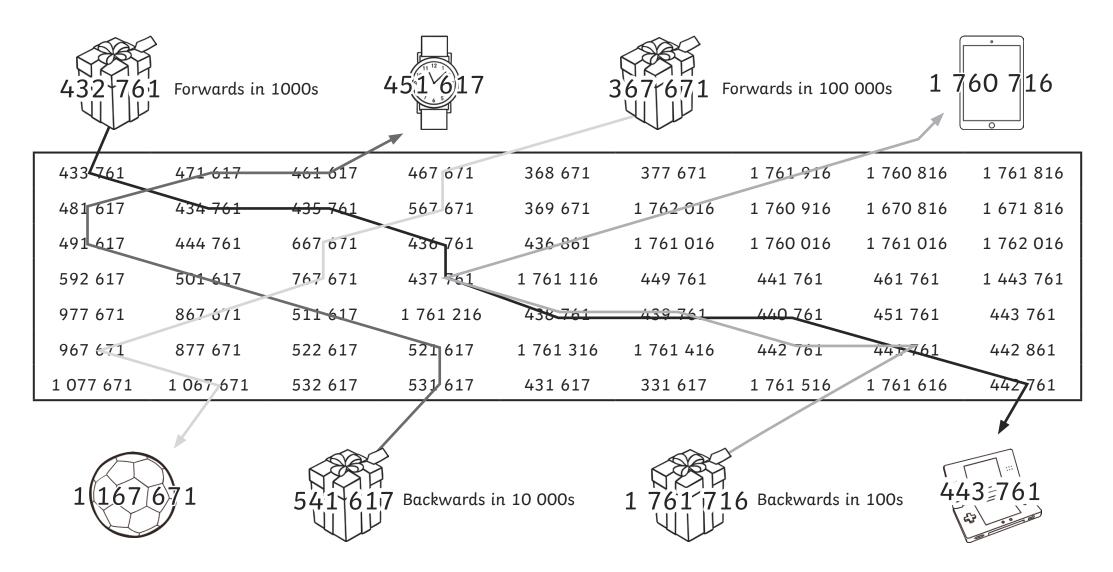
Start at any of the 4 gift boxes and count forwards or backwards in steps of powers of 10 to find out which present is in each box.

432761	Forwards in 1	1000s	45.1617	3	67r671 Fo	rwards in 100	000s 1 7	60 7 16
433 761	471 617	461 617	467 671	368 671	377 671	1 761 916	1 760 816	1 761 816
481 617	434 761	435 761	567 671	369 671	1 762 016	1 760 916	1 670 816	1 671 816
491 617	444 761	667 671	436 761	436 861	1 761 016	1 760 016	1 761 016	1 762 016
592 617	501 617	767 671	437 761	1 761 116	449 761	441 761	461 761	1 443 761
977 671	867 671	511 617	1 761 216	438 761	439 761	440 761	451 761	443 761
967 671	877 671	522 617	521 617	1 761 316	1 761 416	442 761	441 761	442 861
1 077 671	1 067 671	532 617	531 617	431 617	331 617	1 761 516	1 761 616	442 761

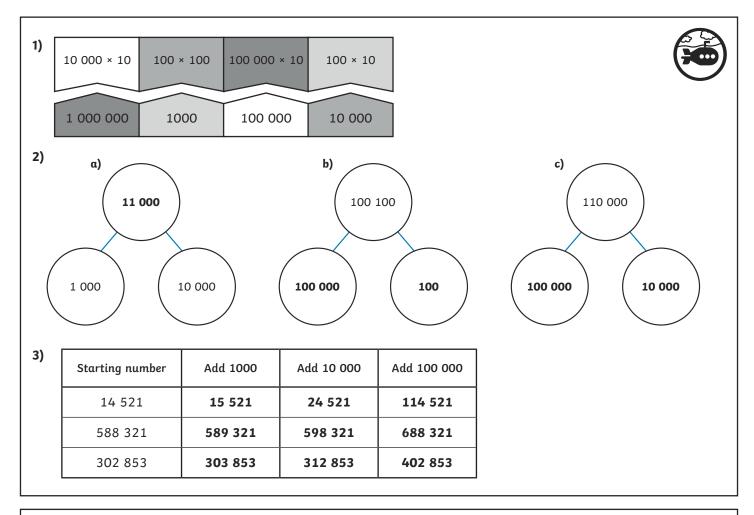




Counting Maze Answers



Counting Maze Answers



Counting Maze Answers

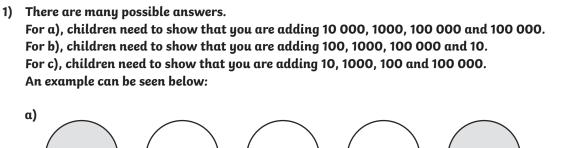
Answers

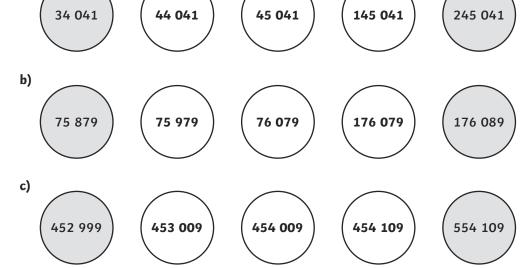
1) a) False 10 000 × 10 = 100 000

- b) False 1000 × 100 = 100 000
- c) True

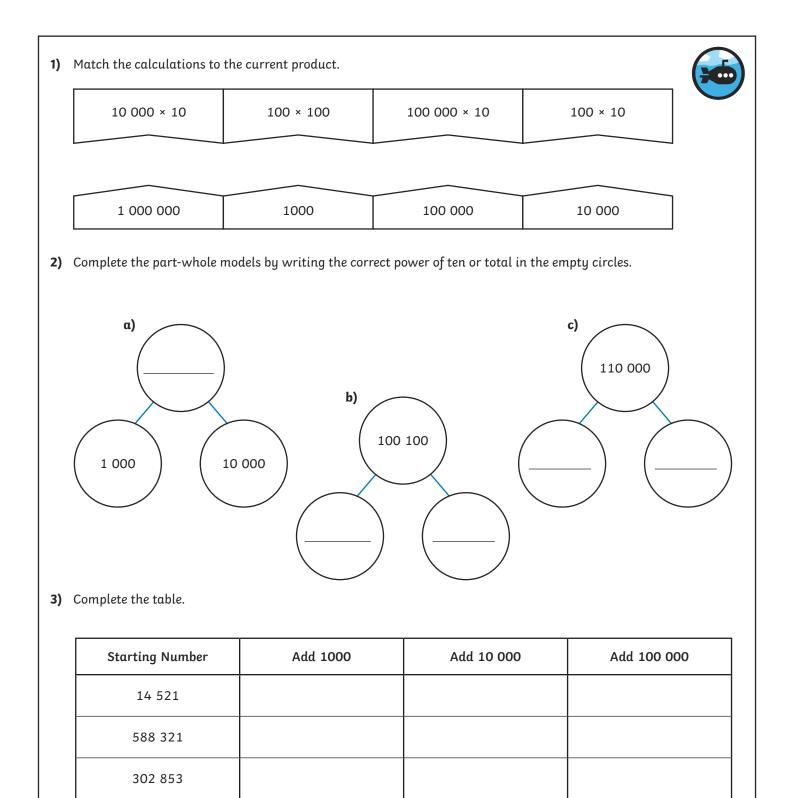
2) a) There are two possible answers:

START	452	100	1000	1000	START	452	100	1000	1000
100	16	100 000	23 109	10 000	100	16	100 000	23 109	10 000
10	10 000	100 000	4527	10 000	10	10 000	100 000	4527	10 000
78	1001	10 000	10 000	FINISH	78	1001	10 000	10 000	FINISH


b) Children should have found the other possible route shown above.


c) There are two pathways. The totals are either 130 110 or 232 210.

3) Tommy is incorrect as each square will be worth 100 000. Talia is also incorrect. Some of the numbers shown on the ten-frame will be larger than 500 000 if at least 6 or more of the squares are filled.

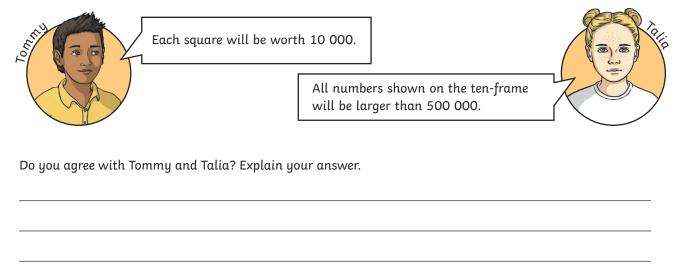

2) a) Never true – each square will represent 100 000.

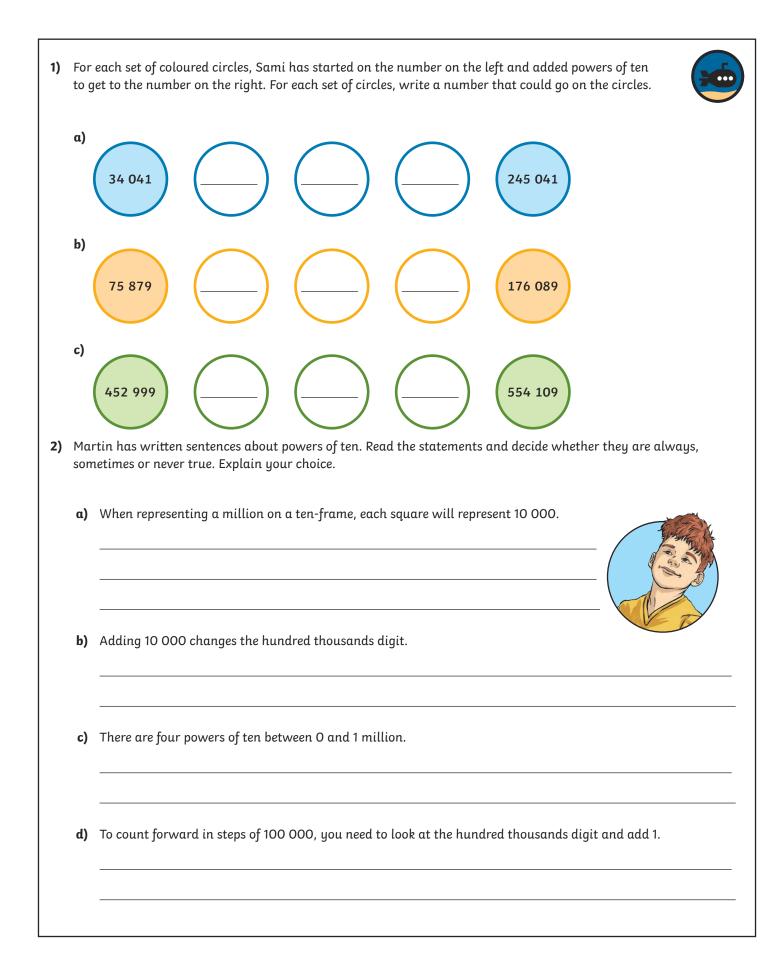
b) Sometimes true - adding 10 000 will change the hundreds digit if the ten thousands digit is a 9.

c) Never true – there are five powers of ten: 10, 100, 1000, 10000 and 100000.

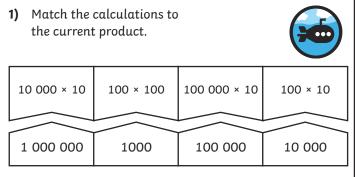
d) Always true - when adding 100 000, you need to look at the digit in the hundred thousands column.

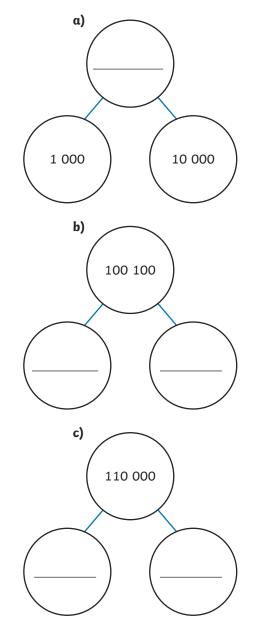
1) Which of these statements are false? Prove it!


a) 10 000 tens are equal to a million.

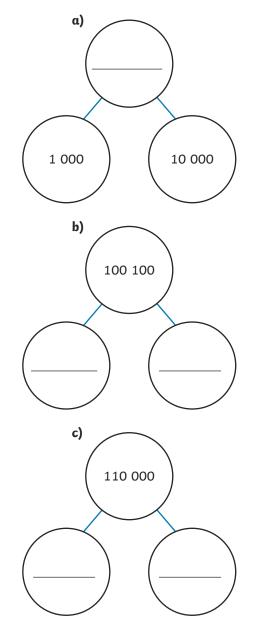

- **b)** 1000 × 100 = 1 000 000
- c) 100 lots of 100 is equal to 10 000.
- 2) a) Moving only left, right, up and down, find a route through the maze that takes you from START to FINISH. You can only land on squares that are powers of ten.

START	452	100	1000	1000
100	16	100 000	23 109	10 000
10	10 000	100 000	4527	10 000
78	1001	10 000	10 000	FINISH


- **b)** Find all possible ways through the maze.
- c) Find the total of each pathway.
- 3) Tommy and Talia are discussing a ten-frame that represents 1 million.



2) Complete the part-whole models by writing the correct power of ten or total in the empty circles.


3) Complete the table.

	Starting number	Add 1000	Add 10 000	Add 100 000
	14 521			
	588 321			
	302 853	UDIES		
3	Focused education on www.regents	life's walk!		

- 1) Match the calculations to the current product.

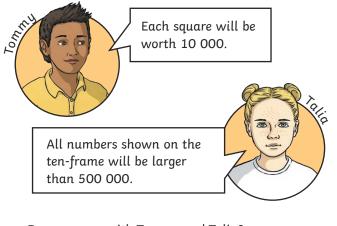
 10 000 × 10
 100 × 100
 100 000 × 10
 100 × 10

 1 000 000
 1000
 100 000
 10 000
 - 2) Complete the part-whole models by writing the correct power of ten or total in the empty circles.

3) Complete the table.

Starting number	Add 1000	Add 10 000	Add 100 000
14 521			
588 321			
302 853			

 Which of these statements are false? Prove it!

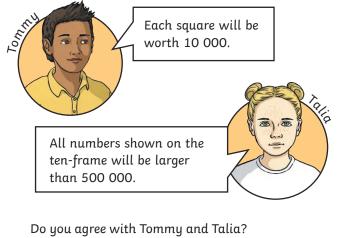

- **b)** 1000 × 100 = 1 000 000
- c) 100 lots of 100 is equal to 10 000.

a) 10 000 tens are equal to a million.

2) a) Moving only left, right, up and down, find a route through the maze that takes you from START to FINISH. You can only land on squares that are powers of ten.

START	452	100	1000	1000
100	16	100 000	23 109	10 000
10	10 000	100 000	4527	10 000
78	1001	10 000	10 000	FINISH

- **b)** Find all possible ways through the maze.
- c) Find the total of each pathway.
- **3)** Tommy and Talia are discussing a ten-frame that represents 1 million.

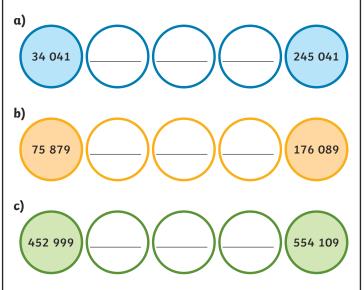


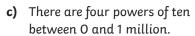
Do you agree with Tommy and Talia? Explain your answer.

- Which of these statements are false? Prove it!
 - **a)** 10 000 tens are equal to a million.
 - **b)** 1000 × 100 = 1 000 000
 - c) 100 lots of 100 is equal to 10 000.
- a) Moving only left, right, up and down, find a route through the maze that takes you from START to FINISH. You can only land on squares that are powers of ten.

START	452	100	1000	1000
100	16	100 000	23 109	10 000
10	10 000	100 000	4527	10 000
78	1001	10 000	10 000	FINISH

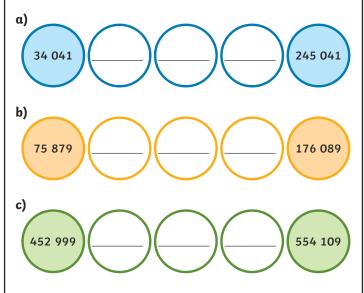
- **b)** Find all possible ways through the maze.
- c) Find the total of each pathway.
- **3)** Tommy and Talia are discussing a ten-frame that represents 1 million.


Explain your answer.


 For each set of coloured circles, Sami has started on the number on the left and added powers of ten to get to the number on the right.

For each set of circles, write a number that could go on the circles.

- Martin has written sentences about powers of ten. Read the statements and decide whether they are always, sometimes or never true. Explain your choice.
 - a) When representing a million on a ten-frame, each square will represent 10 000.
 - **b)** Adding 10 000 changes the hundred thousands digit.



d) To count forward in steps of 100 000, you need to look at the hundred thousands digit and add 1.

 For each set of coloured circles, Sami has started on the number on the left and added powers of ten to get to the number on the right.

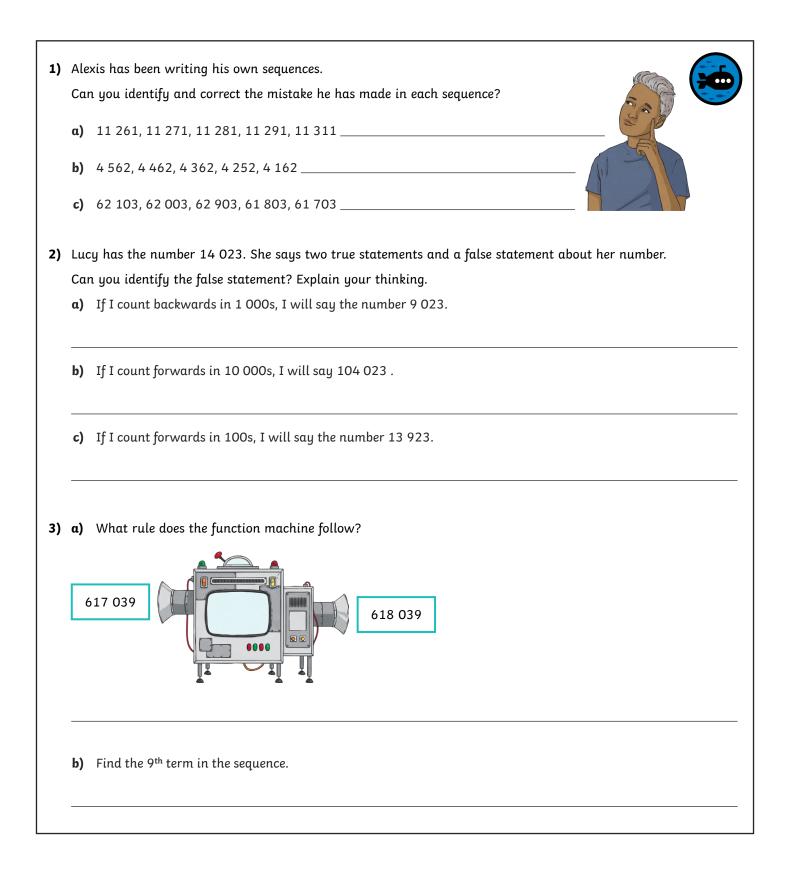
For each set of circles, write a number that could go on the circles.

- 2) Martin has written sentences about powers of ten. Read the statements and decide whether they are always, sometimes or never true. Explain your choice.
 - When representing a million on a ten-frame, each square will represent 10 000.
 - **b)** Adding 10 000 changes the hundred thousands digit.

- c) There are four powers of ten between 0 and 1 million.
- **d)** To count forward in steps of 100 000, you need to look at the hundred thousands digit and add 1.

2 176 349

1 156 349



1)	α)	Write down a calculation that can be used to work out 10 ³ .	
	b)	Calculate 10 ⁴ .	
2)	α)	Count forwards in steps of 1 000.	
	23	, 4342, 6 342	
	b)	Count forwards in steps of	
	10,	, , 210, 410.	
	C)	Count forwards in steps of	
	79	019, 89 019 , ,	
	d)	Count in steps of	
	69	990 , , , , 7 020.	
	۳)	Douvite the numbers in generating order and describe the neuror of 10 they have increased by	
3)	a)	Rewrite the numbers in ascending order and describe the power of 10 they have increased by.	
		639 020 649 020	
		619 020 609 020 629 020	
	b)	Write an additional number that could also be included.	

1) Bethany counts forwards and backwards in 10s from 73.

As I count forwards and backwards from 73, all the numbers I say will end in 3.

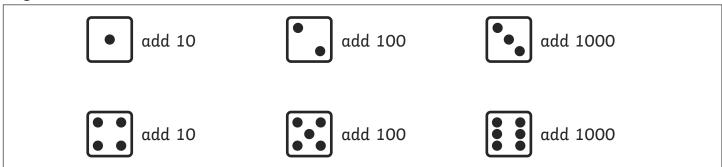
- a) Ron says that she is incorrect. Why did Ron say this?
- **b)** Write a number that you can count from in tens, forwards and backwards, that will always have the same digit in the ones place.
- 2) Explain when Jane would be correct and when she would be incorrect.

When you count in ten thousands, the last four digits of a number stay the same.

- 3) Adam writes some numbers. From each number, he counts forwards and backwards in hundreds.
 - a) Write down the 4th and 8th number that Adam arrives at each way.

8 th backward	4 th backward		4 th forward	8 th forward
		819		
		1 017		
		45 827		
		381 934		

- b) Can you see any relationships between the numbers in each row? Explain what the relationship is.
- 4) Create your own grid that shows a similar relationship between numbers when counting forwards and backwards in either 10s, 100s, 1000s or 10 000s.


To understand powers of ten up to 1 million.

Work with your partner to play this game. The aim of the game is to complete your table first. Roll the dice and use the key below to see which power of ten you will be adding to your starting number. Fill in your table with the right answer. Each time you roll, you should be adding the power of ten to the original number.

If, for example, you roll a two on the dice (add 100) and you have already added 100 to all of your starting numbers, you will have to miss your go! Who will be the first to fill in their table?

Partner A								
Starting Number	Add 10	Add 100	Add 1000					

Partner B								
Starting Number	Add 10	Add 100	Add 1000					

To understand powers of ten up to 1 million.

Work with your partner to play this game. The aim of the game is to complete your table first. Roll the dice and use the key below to see which power of ten you will be adding to your starting number. Fill in your table with the right answer. Each time you roll, you should be adding the power of ten to the original number.

If, for example, you roll a two on the dice (add 100) and you have already added 100 to all of your starting numbers, you will have to miss your go! Who will be the first to fill in their table?

Partner A							
Add 10	Add 100	Add 1000	Add 10 000	Add 100 000			
	Add 10	Add 10 Add 100	Add 10 Add 100 Add 1000	Add 10 Add 1000 Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000<			

Partner	В	
---------	---	--

Starting Number	Add 10	Add 100	Add 1000	Add 10 000	Add 100 000

 Key

 • add 10
 • add 100

 • add 10
 • add 100

 • add 10 000
 • add 100 000

 • add 10 000
 • add 100 000

To understand powers of ten up to 1 million.

Work with your partner to play this game. The aim of the game is to complete your table first. Roll the dice and use the key below to see which power of ten you will be adding to your starting number. Fill in your table with the right answer. Each time you roll, you should be adding the power of ten to the original number.

If, for example, you roll a two on the dice (add 100) and you have already added 100 to all of your starting numbers, you will have to miss your go! Who will be the first to fill in their table?

Partner A							
Add 10	Add 100	Add 1000	Add 10 000	Add 100 000			
	Add 10	Add 10 Add 100	Add 10 Add 100 Add 1000	Add 10 Add 1000 Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000 Image: Add 10 000<			

Partner	В	
---------	---	--

Starting Number	Add 10	Add 100	Add 1000	Add 10 000	Add 100 000

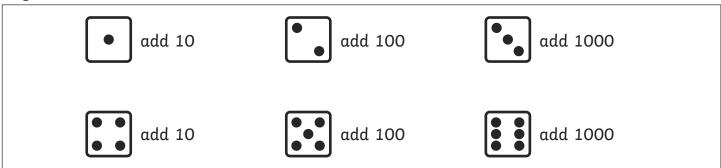
 Key

 • add 10
 • add 100

 • add 10
 • add 100

 • add 10 000
 • add 100 000

 • add 10 000
 • add 100 000


To understand powers of ten up to 1 million.

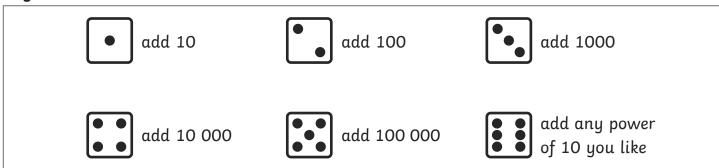
Work with your partner to play this game. The aim of the game is to complete your table first. Roll the dice and use the key below to see which power of ten you will be adding to your starting number. Fill in your table with the right answer. Each time you roll, you should be adding the power of ten to the original number.

If, for example, you roll a two on the dice (add 100) and you have already added 100 to all of your starting numbers, you will have to miss your go! Who will be the first to fill in their table?

Partner A								
Starting Number	Add 10	Add 100	Add 1000					
462								
3844								
1191								

Partner B	-	-	
Starting Number	Add 10	Add 100	Add 1000
341			
4920			
5228			

To understand powers of ten up to 1 million.


Work with your partner to play this game. The aim of the game is to complete your table first. Roll the dice and use the key below to see which power of ten you will be adding to your starting number. Fill in your table with the right answer. Each time you roll, you should be adding the power of ten to the original number.

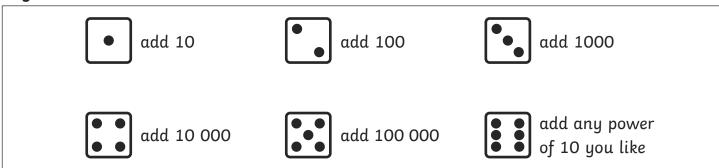
If, for example, you roll a two on the dice (add 100) and you have already added 100 to all of your starting numbers, you will have to miss your go! Who will be the first to fill in their table?

Partner A							
Starting Number	Add 10	Add 100	Add 1000	Add 10 000	Add 100 000		
2462							
35 844							
10 191							

Partner	R	

Starting Number	Add 10	Add 100	Add 1000	Add 10 000	Add 100 000
4861					
23 844					
17 653					

To understand powers of ten up to 1 million.


Work with your partner to play this game. The aim of the game is to complete your table first. Roll the dice and use the key below to see which power of ten you will be adding to your starting number. Fill in your table with the right answer. Each time you roll, you should be adding the power of ten to the original number.

If, for example, you roll a two on the dice (add 100) and you have already added 100 to all of your starting numbers, you will have to miss your go! Who will be the first to fill in their table?

Partner A							
Starting Number	Add 10	Add 100	Add 1000	Add 10 000	Add 100 000		
244 962							
350 844							
106 191							

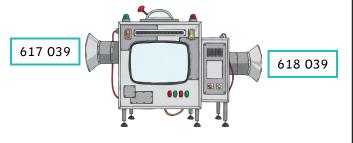
Partner	B	

Starting Number	Add 10	Add 100	Add 1000	Add 10 000	Add 100 000
485 045					
723 891					
451 100					

1)		Write dov d to work			n that c	can be			
	b)	Calculate	10 ⁴ .						
2)	α)	Count forwards in steps of 1 000.							
	23	42,		, 4342	·,		_ 6 342		
	b)	Count for	ward	s in steps o	of				
	10,			, 210,		410	Э.		
	c)	Count for	ward	s in steps o	of		_·		
	79	019, 89 ()19,		, .		·		
	d)	Count		in s	steps of				
	69	90 ,		,		, 7 C	20.		
3)	•	Rewrite t cribe the p				•			
	e	539 020			649	9 020			
	e	519 020	6	09 020	629	9 020			
	b)	Write an that coul		ional num be includ					

1)		Write dow d to work o	n a calculation ut 10 ³ .	that can be	
	b)	Calculate 2	10 ⁴ .		
2)	α)	Count forw	vards in steps c	of 1 000.	
	23	42,	, 4342,		_ 6 342
	b)	Count forw	vards in steps o	f	
	10,		, 210,	410	D.
	c)	Count forw	vards in steps o	f	
	79	019, 89 01	19 ,		
	d)	Count	in st	eps of	
	69	90 ,	,,	, 7 C)20.
3)	•		e numbers in a ower of 10 they	•	
	e	539 020		649 020	
	é	519 020	609 020	629 020	
	b)		dditional numb also be include		

 Alexis has been writing his own sequences.



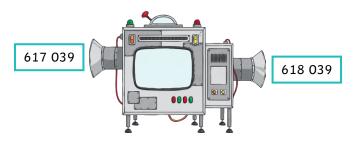
Can you identify and correct the mistake he has made in each sequence?

- a) 11 261, 11 271, 11 281, 11 291, 11 311
- b) 4 562, 4 462, 4 362, 4 252, 4 162
- c) 62 103, 62 003, 62 903, 61 803, 61 703
- 2) Lucy has the number 14 023. She says two true statements and a false statement about her number.

Can you identify the false statement? Explain your thinking.

- **a)** If I count backwards in 1 000s, I will say the number 9 023.
- **b)** If I count forwards in 10 000s, I will say 104 023 .
- c) If I count forwards in 100s, I will say the number 13 923.
- 3) a) What rule does the function machine follow?

b) Find the 9^{th} term in the sequence.


1) Alexis has been writing his own sequences.

Can you identify and correct the mistake he has made in each sequence?

- a) 11 261, 11 271, 11 281, 11 291, 11 311
- **b)** 4 562, 4 462, 4 362, 4 252, 4 162
- c) 62 103, 62 003, 62 903, 61 803, 61 703
- 2) Lucy has the number 14 023. She says two true statements and a false statement about her number.

Can you identify the false statement? Explain your thinking.

- **a)** If I count backwards in 1 000s, I will say the number 9 023.
- **b)** If I count forwards in 10 000s, I will say 104 023 .
- c) If I count forwards in 100s, I will say the number 13 923.
- 3) a) What rule does the function machine follow?

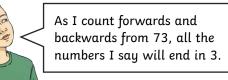
b) Find the 9th term in the sequence.

1) Bethany counts forwards and backwards in 10s from 73.

As I count forwards and backwards from 73, all the numbers I say will end in 3.

Bethany

- a) Ron says that she is incorrect. Why did Ron say this?
- b) Write a number that you can count from in tens, forwards and backwards, that will always have the same digit in the ones place.
- 2) Explain when Jane would be correct and when she would be incorrect.


When you count in ten thousands, the last four digits of a number stay the same.

- 3) Adam writes some numbers. From each number, he counts forwards and backwards in hundreds.
 - a) Write down the 4^{th} and 8^{th} number that Adam arrives at each way.

8 th backward	4 th backward		4 th forward	8 th forward
		819	J	,
		1 017		
		45 827		
		381 934		

- **b)** Can you see any relationships between the numbers in each row? Explain what the relationship is.
- 4) Create your own grid that shows a similar relationship between numbers when counting forwards and backwards in either 10s, 100s, 1000s or 10 000s.

1) Bethany counts forwards and backwards in 10s from 73.

Bethany

- a) Ron says that she is incorrect. Why did Ron say this?
- b) Write a number that you can count from in tens, forwards and backwards, that will always have the same digit in the ones place.
- 2) Explain when Jane would be correct and when she would be incorrect.

When you count in ten thousands, the last four digits of a number stay the same.

- 3) Adam writes some numbers. From each number, he counts forwards and backwards in hundreds.
 - **a)** Write down the 4^{th} and 8^{th} number that Adam arrives at each way.

8 th backward	4 th backward		4 th forward	8 th forward
		819		
		1 017		
		45 827		
		381 934		

- **b)** Can you see any relationships between the numbers in each row? Explain what the relationship is.
- 4) Create your own grid that shows a similar relationship between numbers when counting forwards and backwards in either 10s, 100s, 100os or 10 000s.

